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Abstract

Marine videos present significant challenges for video un-
derstanding due to the dynamics of marine objects and the
surrounding environment, camera motion, and the com-
plexity of underwater scenes. Existing video captioning
datasets, typically focused on generic or human-centric do-
mains, often fail to generalize to the complexities of the ma-
rine environment and gain insights about marine life. To
address these limitations, we propose a two-stage marine
object-oriented video captioning pipeline. We introduce a
comprehensive video understanding benchmark that lever-
ages the triplets of video, text, and segmentation masks to
facilitate visual grounding and captioning, leading to im-
proved marine video understanding and analysis, and ma-
rine video generation. Additionally, we highlight the effec-
tiveness of video splitting in order to detect salient object
transitions in scene changes, which significantly enrich the
semantics of captioning content.

1. Introduction

The recent advent of Artificial Intelligence (AI) has led
to a new research capacity in life and environmental sci-
ences, from on-ground animal biology [9, 34, 36] to ma-
rine biology, e.g., coral detection [46], marine visual analy-
sis [25, 44].

The application of AI methods to ocean-related research
is challenging due to the requirement of significant domain
expertise and engineering work. Biologists have to col-
lect data and manually label the data for specific marine
species and tasks, then find and train a suitable model for
each task. For real-world problems, off-the-shelf models of-
ten struggle to maintain comparative results. For example,
visual grounding models, e.g., Grounding DINO [23] and
SAM2 [30], are reliant on COCO’s predefined classes [20],
and limited to user-defined input (e.g., customized text).
Due to the presence of hundreds of marine species, these
approaches are not applicable to the marine domain.

Figure 1. The MSC dataset is recorded from 13 different coun-
tries, over 24.8 hours of marine video content. The dataset is as-
sociated with fine-grained annotations including clip-level textual
descriptions provided by 18 biologists and pixel-level segmenta-
tion masks provided by 20 professionals.

While Large Language Models (LLMs) can generate
data at scale, they are prone to hallucination. Therefore,
even with LLMs, human intervention is still needed to re-
fine the synthetic data generated by the LLMs, especially
in data-scarce domains. To address this issue, we propose
a new marine video dataset, where the segmentation masks
of marine objects are provided by annotators but the tex-
tual descriptions of the videos are generated automatically.
Note that the MVK dataset introduced in [35] also used
LLMs to generate image-level captions. Compared with
MVK, our MSC provides more fine-grained and richer tex-
tual captions, generated from shorter temporal video seg-
ments (called clips) and validated by human experts. In ad-
dition, MSC is two times larger than MVK. Video Browser
Showdown utilized MVK for known item search in [31, 37],
finding MVK a challenging benchmark dataset for visual
KIS tasks.

Natural questions arise: Why do we create a new video
captioning dataset? and why do we focus on clip-level
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Figure 2. Annotation Generation. The dataset curation consists of two tasks: creating segmentation masks and captioning. (a) We
manually label marine videos to identify the target objects. We aim to build a fine-grained marine wildlife video-text dataset, performing
the following stages: (b) Extracting clips from marine videos using annotated images. (c) Using a VLM to generate synthetic clip-level
captions. (d) Refining the synthetic captions by domain experts. Please zoom-in for the best view.

captioning? We argue that a clip-level video captioning
dataset is essential for capturing richer semantic informa-
tion, where each clip is defined as a semantically coherent
segment. This leads to the development of our multimodal
dataset comprising video-segmentation mask-text triplets,
which explicitly link visual information with detailed tex-
tual descriptions and hold potential for multitask learning.
Furthermore, we address the issue of hallucination prevalent
in SOTA models, e.g., GPT-4.1 [2], suggesting that fine-
grained, visually grounded data are crucial for generating
accurate and reliable video captions.

In summary, our work makes the following contribu-
tions:
• We propose MSC , the first real-world and large-scale ma-

rine video dataset, captured in various environments (see
Figure 1).

• We provide high-quality video-segmentation mask-text
triplets for short-time video clips using a two-stage video
annotation pipeline (see Figure 2).

• We provide benchmark results on MSC across applica-
tions, including video captioning, plot/clip-level caption-
ing, video generation, and visual grounding.

2. Related Work
Underwater Video Datasets. Marine videos have re-
cently attracted considerable attention from the computer
vision community. MarineInst [45] introduced a large-scale
marine dataset with instance segmentation masks, facilitat-
ing image-level visual analysis tasks. Only 10% of the in-
stance masks of MarineInst are annotated by humans while
the remainder is generated by a segmentation model (e.g.,
SAM [15]). CoralSCOP [46] demonstrates the effectiveness
of SAM in coral image segmentation, specifically address-
ing over-segmentation issues. SAM has been commonly
used to create marine image instance segmentation datasets

such as Watermask [17] and USIS10K [18].

Video-Text Datasets. Recently, numerous large-scale
video-text datasets, e.g., Koala-36M [39], HOIGen-
1M [22], MiraData [13], have leveraged automatic cap-
tioning systems (e.g., GPT-4V) to generate video captions.
MovieBench [42] provides video-, scene-, shot-level cap-
tions, also using GPT-4V, by incorporating additional se-
mantic information. ViCaS [6] paves the way for new
video-text datasets designed to evaluate video understand-
ing tasks, including video captioning and visual ground-
ing. Several datasets, e.g., BOVText [41], How2 [32], and
VALUE [16] are utilized for tasks such as video retrieval,
captioning, video text spotting, and video question answer-
ing. Furthermore, domain-specific datasets, e.g., BAS-
KET [27], are useful in applications such as classification
and video generation. Although existing video-text datasets
play an important role for training downstream tasks, e.g.,
video generation, they rely on LLMs that often produce hal-
lucinated outcomes human interventions.

Language-guided Segmentation Datasets. Early refer-
ring video object segmentation (RVOS) datasets, e.g.,
A2D Sentences [11], J-HMDB Sentences [11], DAVIS16-
RVOS [14], DAVIS17-RVOS [14], and Refer-Youtube-
VOS [33], focus on single-object segmentation, where lan-
guage prompts are used to describe a single target object.
These datasets often feature expressions, describing static
attributes like color and shape. The number of expressions
per object varies across the datasets. For instance, A2D
Sentences and J-HMDB Sentences typically have 1-2 ex-
pressions per object, while DAVIS17-RVOS boasts an av-
erage of 7.5 expressions per object, and MeViS [10] pro-
vides 3.5 expressions per object. However, it is observed
that there is a lack of video grounding datasets. To our
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Figure 3. Overview of the MSC dataset. (a) The dataset includes videos and clips, ranging from 1 to 30 clips per video. (b) and (c) Word
cloud for noun and verb of marine captions generated by domain experts, respectively.

knowledge, MSC is the first large-scale marine video text
dataset for visual grounding. For visual grounding model-
ing, LLMs have been widely used to improve visual and
language comprehension [12, 29]. Grounding DINO [23],
built upon Transformers, is designed to generate multiple
bounding boxes as prompts for SAM.

3. Our MSC
3.1. Video Filtering

To choose marine videos for annotation, we considered
three criteria (validated by human annotators): clarity, com-
plexity, and diversity. (1) Clarity means that only videos
whose objects can be seen with moderate clarity are se-
lected. (2) Complexity means that videos containing objects
in three or more distinct object types (e.g., fish, plants, reefs,
divers) are selected. (3) Diversity means that we choose
videos with distinct scenes or objects among those of the
same diving site. Applying the above criteria, we finally
selected 396 videos out of 2,743 videos.

3.2. Video Annotation

The annotation process involves two steps: creating video
segmentation masks and captioning short-time clips. For
the first step, annotators utilize a GUI tool to segment ma-
rine objects. We then use the manually annotated segmenta-
tion masks to identify target objects. In the second step, we
provide high-quality clip-level captions using segmentation
masks returned in the first step.

Step 1: Instance-level Video Segmentation. We devel-
oped a web-based annotation tool for marine video object
segmentation in Fig. 4. This annotation tool inherits from
SAM [15] and [40] to produce high-quality pixel-wise seg-
mentation masks (that we call pseudo-masks), and then al-
lows annotators to refine the generated masks in an iterative

manner. The annotators finally provide a category for each
segmented mask. We focus on six categories, including fish,
reefs, aquatic plants, wrecks, human divers, and sea floor.

Step 2: Captioning. We leveraged LLMs to generating
captions for our collected videos. However, we observed
that the generated captions of long-time videos are often
superficial because of the lack of detailed descriptions for
the events included in the videos. To address this issue, we
split long-time videos into short-time clips, each of which
captures a single-shot event. We found that this step helps
enhance the semantics of the generated captions.

After splitting long-time videos into short-time clips, we
used GPT-4.1 [2], Gemini-2.0 Flash-Lite [1], Qwen-VL [7]
to generate a textual description for each clip. The gener-
ated descriptions were then refined by biologists to reflect
the semantic content specified by the segmented objects in
the corresponding clips. The descriptions were refined to in-
clude the visual attributes and behavior (e.g., feeding, rest-
ing, breathing, social interactions, defense) of segmented
objects and the background (surrounding environment) in
the clips. Finally, the biologists produce a comprehensive
caption for each video by aggregating the refined clip-level
descriptions for the clips in that video, providing a concise
summary of the video content.

3.3. Analysis and Statistics

Diverse Lighting Conditions and Scenarios. Our MSC
dataset was constructed by self-recording 71 visits across
20 distinct diving sites from 2011 to July 2024 (see Fig-
ure 1). Additionally, MSC is compiled with MVK [35],
which encompasses recordings from various regions and
under diverse illumination conditions. Data acquisition for
this dataset was performed using GoPro cameras. Unlike
common video datasets gathered through web crawling, our
focus was specifically on marine organisms captured during
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Figure 4. Visualization of our web-based segmentation annotation tool.

Table 1. Statistical overview of representative marine video
datasets.

Dataset Total Dura-
tion (hours)

Mean Dura-
tion (seconds)

#Video #Country/Region

MVK [35] 12.3 29.9 1378 11
Our MSC 24.8 32.8 2743 20

dedicated diving expeditions. Importantly, a consistent data
acquisition setup was maintained throughout the entire col-
lection process. We show our data’s directory structure in
Figure 5.
Diverse Descriptions. We observed that textual de-
scriptions obtained from LLMs pre-trained on large-scale
datasets often suffer from hallucinations. To address this is-
sue, we integrate the segmentation masks of target objects
into textual descriptions, enabling the descriptions to be
more focused on the target objects’ behaviors and the sur-
rounding background, thereby eliminating hallucinations.
This approach allows to create high-quality captions not
only for visual grounding tasks but for the Text-to-Video
(T2V) task via LLMs video captioning.

To further refine our synthetic captions, we engaged a
team of 18 biologists to accurately identify marine organ-
isms in the video footage. Synthetic captions generated
by LLMs, i.e., GPT4.1 [2], QWen[7], Gemini 2.0 Flash-
Lite [1], are employed to reduce the workload for manual
captioning. Each short-time clip in our dataset was anno-
tated with 1 to 4 text descriptions, comprising 3 synthetic
and 1 human-written caption. The distribution of annotated
videos is illustrated in Figure 3 (a). The word cloud of text
descriptions is illustrated in Figure 3 (b).
Challenges with Object Scale and Imbalance. As shown
in Table 6 (a), while the numbers of fish and coral reef over

2,000 each, fish are predominantly small objects (0.67% of
image area), whereas reefs are typically large 13.03%. Ad-
ditionally, human divers are less frequent but consistently
small objects (1.12% in Table 6 (b)). Conversely, wrecks
are rare but large objects (9.89% in Table 6 (a, b)). This
highlights an imbalance in both object quantity and scale in
MSC dataset.

4. Challenges
4.1. Video-level Captioning

Video captioning aims at generating a descriptive text for an
input video sequence.

Baselines: In this work, we evaluated several prevail-
ing visual-language models (VLMs) for video-level cap-
tioning in the MSC dataset. These models include Qwen-
VL-Chat [7], LLaVA [21], PLLaVA [43], Gemini [1],
MovieBench [42]. The models were used to generate cap-
tions at the video level for our marine video collection.

Qwen-VL uses Qwen as the language backbone and
OpenCLIP ViT-bigG as the visual encoder, connected via
a single-layer cross-attention module as the position-aware
vision-language adapter. LLaVA employs a large language
model, such as Vicuna, LLaMA, combined with a frozen
vision encoder, such as CLIP ViT-L/14) via a single lin-
ear layer as a trainable projector. PLLaVA, an extension
of LLaVA for videos, uses a parameter-free pooling strat-
egy for video captioning. MovieBench is a data pipeline
designed to create shot-level descriptions of scenes, with a
particular emphasis on movie characters.

We set up to evaluate these VLMs with the guide prompt
“Describe the video by following guidelines: you should
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Table 2. Video-level captioning on MSC dataset.

Method Year BLEU↑ METEOR↑ ROUGE-L↑ CIDEr↑ SPICE↑
Qwen-VL-Chat 7B [7] 2023 0.0000 0.0759 0.1384 0.0148 0.0848
LLaVA 7B [21] 2024 0.0125 0.1241 0.1798 0.0000 0.0689
PLLaVA 7B [43] 2024 0.0000 0.1114 0.1443 0.0028 0.0533
Gemini-2.0 Flash-Lite [1] 2025 0.0000 0.1251 0.1829 0.0571 0.0870

MovieBench [42] 2025 0.0000 0.1213 0.1790 0.0898 0.0914

Table 3. Clip-level captioning on MSC dataset.

Method Year BLEU↑ METEOR↑ ROUGE-L↑ CIDEr↑ SPICE↑
Qwen-VL-Chat 7B [7] 2023 0.0000 0.0832 0.1541 0.0046 0.0696
LLaVA 7B [21] 2023 0.0000 0.1337 0.1678 0.0057 0.0638
Gemini-2.0 Flash-Lite [1] 2025 0.0931 0.1736 0.2890 0.3679 0.1647
GPT4.1 [2] 2025 0.7196 0.5186 0.7844 4.9314 0.6139

Figure 5. The MSC ’s data organization.

Table 4. Visual Grounding performance on MSC dataset.

Method Year Input mIoU↑ Recall↑
GroundingDINO + SAM2 2024 Labels 0.6543 0.7135
GroundingDINO + SAM2 2024 Caption 0.4447 0.5244
GLaMM + SAM2 2024 Caption 0.6727 0.7255
VideoGLaMM 2025 Caption 0.6812 0.7532

give a paragraph with maximum 75 words; focus on the
most obvious feature of the main objects in the initial
frames; infer the behavior of the object (feeding, resting,
breathing, social interactions, defense); and describe the
background in about 10 words. Focus on fish, reefs, aquatic
plants, wrecks, human divers, and sea floor. Omit the words
‘underwater’ and ‘shows’.”

We utilized the lightweight versions (7B parameters) of
the models to fit with our hardware specification NVIDIA
RTX-3090 GPUs. Additionally, we amended MovieBench
to generate detailed scene descriptions. Specifically, we in-
put a list of keyframes from a video sequence, along with
the images of target objects, and use GPT-4.1 to describe
the observable features and behaviors of the target objects
in no more than 75 words. The images of the target objects
are originated from the segmentation masks in our dataset.
To optimize the image token usage, each frame is resized
to 540×960. It is important to note that we omit the au-
dio input required in the original MovieBench framework,
as it is unavailable in our setup. We ultilised the captioning
metrics, i.e., BLEU [28], METEOR [8], ROUGE-L [19],
CIDEr [38], and SPICE [5].

Analysis: Gemini-2.0 and MovieBench perform well
across the benchmarking metrics. Specifically, Gemini
achieves 0.1251 (METEOR) and 0.1829 (ROUGE), while
MovieBench achieves 0.0898 (CIDEr) and 0.0914 (SPICE).
MovieBench is based on GPT-4.1, we observe that commer-
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Figure 6. MSC Dataset. (a) The number of instances per category. (b) The average area of category. (c) Distribution of the number of
instances by regions in the MSC dataset.

VIDEO SUMMARY

The underwater landscape is dominated
by rocky coral reef structures. A large

yellow semi-spherical coral bommie can be
seen. Numerous types of small fish can be

seen swimming around the coral. 

CLIP: A diver explores a marine environment. Near a coral reef, he appears to be
cleaning or interacting with the sandy sea floor, or investigating the ecosystem.

VIDEO SUMMARY

A scuba diver prods the sandy bottom
using a diving pointer rod. There is a

nearby wreck structure that has been
encrusted with lots of soft and hard
coral. Meanwhile several species of

damselfish swim nearby. CLIP: A damselfish swims along a wreck structure encrusted with sponges and corals.
The background features a sandy sea floor and clear water with small fishes.

CLIP: A small white triangular tropical fish appears against a wall of coral with a red
and brown color. Occasional white-brown branching corals are seen.

CLIP: A large yellow coral bommie is seen in the background, semi-spherical in shape.
Many small silver tropical fish can be seen swimming in the open water. 

Figure 7. Visualization of video-text segmentation mask triplets.

cial models often produce comparative results.

4.2. Clip-level Captioning

Clip-level captioning aims to split a video into clips and
then provide a caption for each clip.

Baselines: We also leverage various open-source and
commercial VLMs like in the above video level captioning
on our MSC dataset. With the similar setup to video cap-
tioning, we used the same prompt, but we input the frames
from each clip rather than an entire video. We set the num-
ber of frames per clip to 10. To evaluate the clip-level cap-
tioning, we adopted the same metrics as in the Sec. 4.1.

Analysis: Regarding clip-level captioning benchmark,
GPT-4.1 demonstrates superior performance, achieving the
highest scores across all benchmark metrics. Gemini-2.0
ranks as the second-best performer in this comparison.
Specifically, GPT-4.1 achieved scores of 0.7196 (BLEU),
0.5186 (METEOR), 0.7844 (ROUGE-L), 4.9314 (CIDEr),
and 0.6139 (SPICE), while Gemini 2.0 yielded respec-
tive scores of 0.0931 (BLEU), 0.1736 (METEOR), 0.2890
(ROUGE-L), 0.3679 (CIDEr), and 0.1647 (SPICE). Note,
we observe commercial models consistently achieve com-
petitive performance in video and clip level captioning on
this challenging domain in Table 3.

4.3. Visual Grounding

The visual grounding task in the MSC dataset involves link-
ing a target model’s response to a user-specific text query by
identifying marine creatures, objects, and their behaviors.
This task requires the model to understand both spatial and
temporal aspects in visually complex marine scenes charac-
terized by high object variability, occlusion, and challeng-
ing lighting.

Given a caption {CAPTION} describing a clip, we
prompt a target model using the format “{CAPTION}.
Please respond with segmentation masks” to extract seg-
mentation maps aligned with the textual description. The
expected output highlights relevant spatial regions across
frames, demonstrating the model’s ability to understand
both spatial details (what appears in each frame) and tempo-
ral dynamics (how things change over time). We evaluated
the grounding quality using mIoU and Recall metrics across
annotated frames.

Baselines: We first assessed the performance of an
open-vocabulary model, GroundingDINO [23] combined
with SAM2 [30]. For further validation, we benchmarked
recent LLM-based visual grounding models, including
VideoGLaMM [26] and GLaMM [29]. As GLaMM [29]
is originally designed for image-based grounding, we ex-

6



Table 5. Evaluation results with open-source model and commer-
cial models in video generation.

Method Venue/Year CLIP-T↑ Temp Consistency↑ FID↓ FVD↓
Latte[24] 2025 0.3189 0.993 76.91 3123.05
Hailuo [3] - 0.3236 0.9934 83.68 2007.37

Kling 1.5 [4] 2024 0.3148 0.997 71.90 2820.24

tended it to the video domain by incorporating temporal ca-
pabilities through SAM2 [30].

Analysis: While GroundingDINO + SAM2 show
promise, their reliance on COCO-style categories limits
their generalization ability to the marine domain. Perfor-
mance notably degrades with natural, unconstrained cap-
tions and only improves when explicit label names are ex-
tracted for prompting. In contrast, LLM-based models bet-
ter support spatio-temporal reasoning, establishing a more
robust foundation for grounding in complex marine envi-
ronments.

4.4. Text-to-video Generation

Our goal is to benchmark T2V models in generation of
marine videos using clip-level captions from a video-text
dataset. Pre-trained models were used in this experiment.

Baselines: We compared the open-source model
Latte[24] and commercial models, i.e., Hailuo [3], Kling
1.5 [4], in marine video generation task. For the experi-
mental setup, we used 50 clip-level caption prompts as in-
put for the T2V models. Analysis: We observe commercial
models often perform well on video generation across T2V
metrics in Table 5. Specifically, Hailuo gains the superior
result with 0.3236 (CLIP-T) while Kling 1.5 gains 0.997 on
temperal consistancy metric. Pre-trained T2V models ex-
hibit suboptimal performance in FID and FVD metrics due
to insufficient diversity of underwater visual content in ex-
isting training datasets.

5. Conclusion
This paper introduces MSC , the first large-scale video
dataset of marine wildlife. The dataset contains fine-grained
annotations, including object segmentation masks, clip-
level captions, and video summaries. We developed an ef-
fective two-stage data annotation pipeline minimizing hal-
lucinations by LLMs. Our associated benchmark includes
video captioning, visual grounding, and text-to-video gen-
eration. We believe that MSC will contribute to facilitate
research in marine video understanding.
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